
Final Project Writeup 6.830
Benton Wilson Elizabeth Weeks

1 INTRODUCTION

Programming competitions are a great way to test our knowledge,
since they force us to think outside the box and dive deep into
understanding how to improve a given system. As such, we chose to
participate in the 6.830 Programming Contest for spring 2021.

The structure of this competition was as follows: each team was
given the same starting code, which was correct, but not heavily
optimized for speed. The starting code worked, but the goal for each
team was to make their code run as fast as possible. We were given
60 seconds before any of the queries began to do any preprocessing
of the data. Queries were then fed in to the system, and timed to see
how long they took to return the correct result.

A few constraints given for the environment were as follows (run
on an AWS r5.4xlarge instance):

Processor Intel(R) Xeon(R) Platinum
8259CL CPU @ 2.50GHz

Configuration 8 cores / 16 hyperthreads

Main memory 128 GB RAM

OS Ubuntu 18.04

One thing worth noting is the large amount of main memory that
was available to us. It turned out that on the largest test case (there
are 4 test official test cases ranging from ”small” to ”X-large”), the
X-large test case only had a peak memory utilization of 60GB in the
base code (just half of what is available). As such, part of the fun
for the project was coming up with algorithms meant for in memory
joins, and trying to adapt some of the ideas from class where we
generally focused more on databases that cannot always do their
joins in memory.

2 OVERALL ARCHITECTURE FOR OPTIMIZATIONS

In general, our strategy for improving the speed of the code was to
first try and find the bottlenecks in the code, and then loosen those
bottlenecks by making use of concurrent execution, reducing the
amount of work that needs to be done (like deferring operations until
later), and also by combining strategies (since certain optimizations
are better on certain inputs).

In the end, our code made a few major changes to implementation
that seemed to have the largest effect. Unlike in the base code, we
make extensive use of multi-threading to increase the amount of
work that our system is able to do. Since there is an overhead to
starting up and coordinating new threads, we also did some tuning,
as it is sometimes more efficient to start fewer threads, or even just
run the serial version of the code for smaller queries. We also tried
to minimize, as much as possible, the computing of unnecessary
work, employing techniques such as early return. There were also a
few smaller optimizations that helped our code run faster (discussed
in detail in the next section). Our code runs in around 112 seconds
total on the AWS instance, spending around 66 seconds on the extra
large test.

3 SPECIFIC OPTIMIZATIONS AND THEIR EFFECTIVENESS

3.1 Join

Unsurprisingly, a large bottleneck in the base code came from doing
joins between two different tables. As a result, we spent a large
majority of our time trying to optimize our join algorithm.

In the base code, the join is implemented in Join::run() using
a rather simple, serial algorithm. First, a hash table is built on the
smaller table, and then the larger table is scanned, probing the hash
table during the second scan.

One of the first optimizations we made here was to use the
std::thread interface to parallelize the probing of the hash table.
Unfortunately, this added one small problem; in the serial version, all
of the values of the join were being put into a single tmp results
variable, but in order to avoid race conditions, we needed each thread
to have its own version of the temp results variable. In order to do
this, we gave each thread one array of temporary results in a larger
array of all the temporary results (called all tmp results ). Then,
after each thread finished with its own temp results, we merge all
of those results into the main tmp results variable. This final
step is necessary, because later operators (higher up the query plan),
require that the results are contiguous in memory (so they need to
be merged eventually).

While this single optimization gave us a large improvement, we
were still taking around 162 seconds to pass the extra large test. This
was an exciting milestone since it was the first time we passed extra
large but we knew we still had more work to do.

After making this optimization, we realized another problem;
even though lookups into the hashtable were parallelized, the merg-
ing of all of the threads‘ individual temporary results was done in
one thread, so one thread would still have to actually write the entire
size of the output of the join. Thus, we thought about how we could
also parallelize this part of the code (we can refer to this as the
”merging” phase).

Since the database uses column store, we were actually able to
solve this problem by having each thread be responsible for merging
the values of one column into the single all tmp results . After
we did this, we were able to pass all of the test cases online, finishing
the total tests in around 162 seconds.

However, one problem with this approach, which we realized
later on, is that when there are a small amount of columns in the
output (such as with the X-large test), we aren’t actually spawn-
ing very many threads to do the joins. As a result, we decided to
also parallelize the merging of the columns and then each thread
was responsible for inserting values into a subsection of a column
variable (the subsections were disjoint as to prevent threads from
overwriting each other). After making this optimization, we were
able to significantly reduce our runtime from 86 to 76 seconds on
the extra large test.

Finally, upon doing both optimizations (of the probing and the
merging of the temporary results), we notice that some of our test
cases (particularly the smaller ones), got much slower (for reference,
slower by about a factor of 2). We hypothesized that this was due
to the overhead of starting threads when the work is small (like
when joining two small tables). To fix this, we simply run the serial
version of our code when the size of the tables is under a certain
threshold, and we also reduce the number of threads that we spawn
for some of the medium size joins. Doing this allowed us to recover



some of our speed on the small test case, but it did not give us a
huge improvement on the X-Large test.

We also made a small optimization with ending early. Namely, if
either table is of size zero in a join, then we know that we can just
stop our join right there; there is no needed to do the rest of the join
since we can’t possibly match on anything.

3.2 Filter Scan and Self Join
Two other operators in the code base are FilterScan and
SelfJoin. Filter scan is a scan of a relation with a filter applied,
whereas Self Join handles the special case of joining a table with
itself. In both cases, we employed the parallelization strategy from
Join; that is, we partitioned the input, had each thread handle its
partition separately, and then merged the results into the final results
in parallel. Doing this gave us about a 10% boost in performance
(though it seems like more of the boost came from parallelizing
SelfJoin::run()).

3.3 Thread Pooling
In general, we know that spawning new threads can have a lot
of overhead. As a result, we wanted to try using the common
technique of having a shared thread pool to get around some
of the overhead. We used a small library found on a github
(https://github.com/progschj/ThreadPool), and using this for thread-
pooling gave us about a 5% boost in performance on the large test.

3.4 Other Small Optimization
A rather small optimization that we did involved starting the left
and right subtrees of a join in their own threads. This helped par-
allelize some of the different filter scans, and was a rather simple
optimization that we did at the start, that seemed to help a bit.

Another, rather minor optimization that we made was in the
FilterScan method for checking if a row matches a filter. Instead
of looping through all the filters to see if a row matches, we break
early. Before the code was continuing to evaluate the rest of the
columns. While this optimization did not seem to make a huge
change, it sometimes seems to help the code run faster locally, and
definitely did not hurt performance, so we decided to keep it for the
final.

4 DISCUSSION

4.1 Optimizations that didn’t work
So far, we have talked about the optimizations that we ended up
using, but there were also many attempts at optimizations that either
made no difference or actually hurt performance. Sometimes, this
could be frustrating, but overall it helped us gain knowledge about
what our bottlenecks were.

4.1.1 Query Plan Reordering
Throughout 6.830, we have talked a lot about the best way to order
queries. The starter code simply sets up a left deep join tree with
no full cross products, but other than that, there is no join ordering
optimization done. This was actually one spot that we spent a decent
amount of time trying to optimize at the start, but we weren’t able
to come up with a good way to choose the best ordering. Also, it
is worth noting that even though we had some code for query plans
from class, we chose not to port all of it over, since we didn’t think
that it would make as big of a difference (it might take longer to
plan the query than to just do a lot of the smaller queries). Some
very simple heuristics that we tried which did not end up working
were to first sort the joins by smallest table to largest, or to try
and give different weights to filters. Neither of these improved the
performance of the code. We did determine that moving any joins on
two primary keys to the beginning of the join ordering is beneficial
since this join will only produce one row.

4.1.2 Efficient Temporary Results in Joins
As discussed earlier, we ended up parallelizing joins by giving each
thread it’s own vector of temporary results before merging all of the
temp results. However, we saw one clear problem with what were
were doing; if we needed to have 10 columns in our output, then we
would be storing 10 uint64 t values in temp results for each row.
However, if instead we simply stored the row number for the left
and right table for each row in the output, we would only have to
store 2 values in the temp results for each join. Then, we could just
use the row number for each of the left and right tables to get the
correspond data in the merge step.

Overall, we thought that this would help us not move as many
values, during each join, but it turned out that it made the program
slower. Upon investigation, we found that many joins used very few
columns; if the number of columns in the output was 1 or 2, then the
original algorithm would be faster. Though we think this would be
an important consideration for a more broad suite of tests, it actually
did not seem to help for the tests in this case.

4.2 General Challenges
4.2.1 C++
While we are both somewhat comfortable with C, C++ is a different
beast, and as with C, debugging code can often be a process (com-
pared to some other simpler languages like Java). However, we have
both gained a lot of appreciation and knowledge about some of the
internal workings of C++ types like std::vector. Also, one thing
that really threw us off was that vectors are automatically copied
by value upon reassignment unless marked copy by reference; this
led to many hours of debugging, since we were used to aliasing by
default. Also, since C++ is newer to us, it took longer than we would
have liked to really get spun up on how the code base itself worked.
However, once we understood the main code flow, we didn’t have
too much trouble figuring out how each part worked.

We also experienced some difficulty testing locally since our
computers have different architectures and different amounts of
RAM. Anything that ran on Elizabeth’s computer was slower and
caused her internal fan to start. This made comparing results between
the two computers and the submission site difficult.

4.2.2 Implementing Things That Didn’t Work
In general, it was discouraging to spend a lot of time debugging
and implementing a new improvement in the system, only to have
it not actually work in the end. Specifically, we had a lot of bugs
when working on only storing the row numbers in the temporary
results. Sometimes, it felt like something should definitely be an
improvement, but despite all the effort, it didn’t make a difference.
At the same time, trying different optimizations is never guaranteed
to work, and at the very least, we gained a better appreciation for
some of the details about how our program was working.

4.2.3 Parallel Programming
As with any program, things get more complicated when using
multiple threads, and it is often much more difficult to debug. This
project was no exception. We often would have things working in
one thread, but then when we scaled to more threads, we would end
up with race conditions that could be difficult to track down.

5 FUTURE WORK

5.1 Preprocessing
One thing that we struggled with was coming up with a clear way to
use the 60 second preprocessing time allotted to us before executing
queries. Overall, we think that given the time to build out nice
systems for storing data, we could have made better use of various
aspects of the data. For instance, if we had the uniqueness and
indices for various columns, we would be able to efficiently prob



into highly unique columns (for instance, it would have been easy to
do lookups for primary keys). However, this would have required
many larger parts of the program to be hugely modified in order to
pass data from the preproccessing stage into the operators, so we
opted not to focus on this until we ran out of ideas for optimizations
in the joins. Also, we thought that it might be possible to simply
precompute some of the hashtables, but we didn’t end up having
great luck with this when we tried it (it didn’t really make much of a
difference, and was prone to using up too much memory).

5.2 Storing One Column For Joins
Another optimization that we thought of towards the end, but could
not implement was that we don’t actually need to store both the left
and right column for the columns we are joining on. This is because
all joins are equi-joins; thus if we are joining on A.c1 = B.c1, we can
only store one column, and it will contain the values for both A.c1
and B.c1. This would potentially save lots of wasted movement of
data depending on how the queries are structured. We don’t think
that this would have much overhead to implement either, so it is
definitely something we would have implemented given a bit more
time.

5.3 Bushy Query Plans
We also think that it should be possible to do some sort of efficient
bushy query plan (and we could just spawn a thread for each side
of the tree). However, since we ended up not building out the
infrastructure for histograms/various selection size estimators, we
did not have a great way of actually choosing a bushy plan. Also,
it seemed like many of the test cases often didn’t use very many
joins per query, so we didn’t want to obscure results from other
optimizations by creating a whole new structure for making the
query plans.

5.4 Load Balancing Among Thread Partitions
Currently, when executing the probe phase of a join, we simply give
each thread an equal number of rows from the larger table to probe
with. However, it is possible that some threads do much more work
than other threads. For instance, on thread may find many rows to
put in the output, but then other threads may have much less work to
do. This could lead to some threads sitting around idle, waiting for
the slowest thread to finish.

We had few ideas for fixing this problem. One way would be to
compute some simple statistics on the join inputs, and use heuristics
to guess at how big the partitions would be. However, we weren’t
sure how to do this.

Another thing that we thought might be interesting was if we
had threads set a flag when they finished. Then, other threads could
check that the flag has been set, and if a thread still had say, more
than 50% of its work left to do, it could ask the finished thread
to continue doing work. Unfortunately, this is one area where we
both feel that our knowledge of locking and threading in C++ is not
strong enough to create an efficient implementation.

5.5 Two Way Partitioning On Joins
Finally, one thing that we really struggled with writing an algorithm
for was efficient partitioning of both the left and right of our tables
when doing a join. Currently, a lot of time is spent doing look ups
into the hash table, which is built on the smaller of the left and
right input to a join. However, we think that it might be possible
to partition both the left and right tables into N partitions, based on
the join column. Then, each thread could be responsible for joining
only the partition of the left and the right that it was responsible for.
This could greatly reduce the amount of comparisons that we need
to do, which would improve the overall run time.

However, we also think that this approach would be greatly lim-
ited by uneven partitioning, so we would need an approach for

getting around this (potentially by spawning more threads when one
thread is stalled).

ACKNOWLEDGMENTS

We would like to give a huge thanks to the 6.830 staff for setting
up the programming competition and for sharing their knowledge
throughout the semester :).


	Introduction
	Overall Architecture for Optimizations
	Specific Optimizations and Their Effectiveness
	Join
	Filter Scan and Self Join
	Thread Pooling
	Other Small Optimization

	Discussion
	Optimizations that didn't work
	Query Plan Reordering
	Efficient Temporary Results in Joins

	General Challenges
	C++
	Implementing Things That Didn't Work
	Parallel Programming


	Future Work
	Preprocessing
	Storing One Column For Joins
	Bushy Query Plans
	Load Balancing Among Thread Partitions
	Two Way Partitioning On Joins


